
Developing YPRT1

29.10.2022

YPRT
Developing / patching
the Printer ROM

Meindert Kuipers

Allschwill HP Summit, 2022

Developing YPRT2

29.10.2022

Contents

◆ Inspiration

◆ What is YPRT

◆ Studying the standard PRINTER 1E ROM

◆ Development method

◆ What must be done

◆ Plan A: just patching should be simple

◆ Plan B: It might be more complex then I thought

◆ Plan C: Help: Bankswitching needed

◆ What’s next

Developing YPRT3

29.10.2022

Inspiration

Inspiration came from the DM41X:

◆ The DM41X supports the standard and unpatched PRINTER-1E

ROM to print to the infrared port to a real IR printer or IR receiver

and printer simulator

◆ This is one of the few ways to get data out of the DM41X under

HP41 program/mcode control, so it had my immediate interest

◆ I built a USB IR receiver (after the example of Martin Hepperle)

which was my first ever Arduino project. This was great fun and

works with the DM41X and WP34S (and probably with a real HP-

41 IR module as well) and is expected to work with other IR based

calculators.

◆ The PC-based HP82240 printer simulator (Christoph’s great piece

of software) sees a serial port

◆ If this is possible with the DM41X, then it should be possible with

the HP41CL

Developing YPRT4

29.10.2022

Inspiration

DM41X

PRINTER-

1E ROM

HP82143A

FIRMWARE

translation to

HP82240B

rate throttle

flag 15/16

Catch

SELP 9

IR

LED

IR receiver

HP C4103A

amplifier +

filter

Arduino
USB

PC

USB

emulated

serial port

Christoph’s

HP82240B

emulator

Status

read

Developing YPRT5

29.10.2022

What is YPRT?

YPRT is an attempt to implement printing from a modified

PRINTER-1E ROM to the serial port of the HP41CL

◆ To be used with a PC and printer emulator

◆ Or used by a real printer with serial port support

◆ Integrate in HP41CL ecosystem, Y**T was still available

Challenges

◆ Can flag 15/16 be used to control MAN / NORM / TRACE mode?

◆ Can we support graphics?

◆ Can it work with an HP82240B emulator?

◆ How to handle flags 21 and 55?

Developing YPRT6

29.10.2022

Studying the standard PRINTER 1E ROM

Must reads:

◆ HP82143A Printer Study by Doug Wilder (thanks Doug)

◆ HP82143A VASM Listings, improved

◆ PRINTER-1E disassembly listings

◆ HEPAX manual printer mcode section (and found a mistake)

Findings

◆ SELP 9 is the instruction to control the printer

◆ 6 possible commands

◆ There are blocks of NOP’s in the ROM, use these for extra code

◆ Printer status word contains printer buttons, mode and conditions

◆ The Saturn instruction set has a printer commands ?PBUSY that is

never used

Developing YPRT7

29.10.2022

Studying the standard PRINTER 1E ROM

HP82143A printer commands:

◆ SELP 9 (0x264) transfers control to the HP82143A printer

processor (Helios) with the following commands:

Mnemonic Hex Description

PFSET? 0 or

BUSY?

0x003 Set carry if printer busy

PFSET? 2 or

POWON?

0x083 Set carry if printer is ON

PFSET? 1 or

VALID?

0x043 Set carry if status valid

PRINTC 0x007 Send byte in C[1:0] to the printer

RDPTRN 0x03A Read the printer status word to C[13:10], must be

followed by RTNCPU

RTNCPU 0x005 Return control to the HP41 CPU, must follow

RDPTRN

Developing YPRT8

29.10.2022

Studying the standard PRINTER 1E ROM

Analysis of the SELP 9 printer commands:

◆ POWON?

Used 9 times, various locations in the ROM

◆ VALID?

Used 2 times, in the FNSTS routine (read printer status)

◆ RDPTRN, RTNCPU

Used only once, in the FNSTS routine

◆ BUSY?

Used twice, in the FNSTS and PBYTEC routine

◆ PRINTC

Used only once in the PBYTEC routine

Developing YPRT9

29.10.2022

Studying the standard PRINTER 1E ROM

First conclusions:

◆ PBYTEC and FNSTS are the routines to be patched

◆ POWON? check will be simply removed

• We simply assume that when YPRT is plugged in the

HP41CL the user actually want to use this function, and we

simply skip this test such that the ROM thinks the printer is

always powered.

• Therefore Flag 55 and Flag 21 will always be set after a

power-on of the 41CL with YPRT plugged!

• All occurances of POWON? are patched such that this always

tests true

• VALID? test can be removed

• Checks if the printer status is valid, since we intend to

simulate the status we remove this test

Developing YPRT10

29.10.2022

Studying the standard PRINTER 1E ROM

First conclusions:

◆ BUSY? can be removed

• Test is done when the status is checked, and a busy printer is

not relevant in this case

• More relevant is the BUSY check when sending data in

PBYTEC, this must be replaced with a test if the serial port is

ready and/or busy

◆ RDPTRN must be replaced

• With a routine that simulates the status word by reading flags

15 and 16 and setting the correct other bits

◆ PRINTC must be replaced

• With a routine that sends the byte to the HP41CL serial port

◆ PRINTER-1E function name has no RTN

Developing YPRT11

29.10.2022

Studying the standard PRINTER 1E ROM

Status bits:
Bit # Mnemonic Description Use in Serial Printer ROM

15 SMA TRACE mode when set From User flag 15

14 SMB NORM mode when set, MAN mode

when 14 and 15 are clear

From User flag 16

13 PRT PRINT key down Not used, always 0

12 ADV PAPER ADVANCE key down Not used, always 0

11 OOP Out Of Paper Not used, always 0

10 LB Low Battery Not used, always 0

9 IDL Idle condition Not used, always 1

8 BE Buffer Empty Not used, always 1

7 LCA Lower Case Alpha Do we need to fill this? Comes from printer?

6 SCO Special Column Output Not used, always 0

5 DWM Double Wide Mode Not used, always 0

4 TEO Type of End-Of-Line Not used, always 0

3 EOL Last End-Of-Line Not used, always 0

2 HLD Hold for Paper Not used, always 0

1 - Not used, always returns 1 Not used, always 0

0 - Not used, always returns 1 Not used, always 0

Developing YPRT12

29.10.2022

Studying the standard PRINTER 1E ROM

Pitfalls:

◆ The PRINTER ROM is fixed in Page 6

◆ A fixed Page has the advantage that relative long GOSUB and

GOTO are not needed

◆ Many entries are directly called from the HP41 OS or internal from

the PRINTER ROM, these entries must be preserved

◆ The subroutines to be patched (FNSTS and PBYTEC) are cleverly

programmed with a number of internal jumps and entries

◆ It is not always clear which registers are used

◆ It is not always clear how many subroutine levels may be used

◆ Several OS interrupt entries are used: PAUSE, I/O, ON, MEMORY

LOST

Developing YPRT13

29.10.2022

Development method

What tools are best to create YPRT

◆ CalypsiNut is my favourite for developing a custom ROM image

• Good assembler and linker

• Results in a .rom file that can be loaded with a serial cable to

the HP41CL

• But the PRINTER ROM cannot be changed, entries must be

preserved

• I decided this would cause too much trouble to setup Calypsi

in the proper way and would require a clean source of the

PRINTER ROM for re-assembly

◆ Decision:

• Use DAVID Assembler/HEXED to patch a copy of the

PRINTER-1 E directly in a 41CL RAM page

• Make regular backups of the ROM image to the PC

Developing YPRT14

29.10.2022

Development method

The challenge of documentation

◆ Replacing and patching a piece of original code requires careful

tracking of addresses and registers

◆ No text editor entry with DAVID Assembler

◆ Turned to MS Excel for documenting code, and this turned to work

out great with register tracking, especially when having to use

bankswitching later

Developing YPRT15

29.10.2022

Development method

First experiences

◆ Editing a ROM in-situ in Page 6 is tricky

• Especially when editing the entry points

• Best edit in a neutral page with all entries disabled and plug

in Page 6 when ready to test

• Use an addition RAM page in Page 7 for the new routines

◆ Testing is most difficult:

• Testing in a PC emulator is not an option due to the use of the

41CL serial port

• No suitable debugging tools

• Trial and error

• Many crashes and need to remove the battery and do a full

reset, and having to bootstrap the 41CL again and again,

next project is a reset option for my HP41CL

Developing YPRT16

29.10.2022

What must be done

FNSTS - FETCH NEW

STATUS

USES: C,ST[7:0],S9, NO PT, NO ADDITIONAL SUBROUTINE LEVELS

PRESERVES: ORIGINAL ST[7:0] IN

C[1:0]

INPUT: S9=PRINTER INTERFACE ERROR

FLAG

(IF S9=1 THEN NO ATTEMPT IS MADE TO READ

STATUS)

OUTPUT: ORIGINAL ST[7:0] IS IN

C[1:0]

IF S9=0, THEN FIRST BYTE OF PRINTER STATUS IS IN S[7:0] AND

SECOND BYTE OF PRINTER STATUS IS IN

C[13:12]

ASSUMES: HEXMODE

FXSTS - FETCH EXISTING STATUS. SAME AS FNSTS EXCEPT DOESN’T

SCRATCH

OLD STATUS BEFORE READING.

FS90 - FETCH EXISTING STATUS, ENTRY POINT FOR ERROR DIAGNOSIS

ROUTINE.

SAME AS FXSTS EXCEPT IGNORES THE STATE OF S9 ON INPUT,

DOESN’T

PRESERVE ORIGINAL ST[7:0], AND IGNORES PRINTER’S "BUSY" STATUS

BIT

FNSTS routine – get the printer status

Developing YPRT17

29.10.2022

What must be done
FNSTS routine – get the printer status

Original code Original comments Added comments

FXSTS 6D58 398 C=ST flags in C[1:0]

 6D59 24C ?FSET 9 ;ERROR ALREADY? error?

 6D5A 360 ?C RTN ;YEP, C(0-1)= ORIGINAL STATUS return if error

 6D5B 05B JNC +0B FS20 6D66 jump into FNSTS

FNSTS 6D5C 398 C=ST flags in C[1:0]

 6D5D 24C ?FSET 9 ;ERROR ALREADY? error?

 6D5E 360 ?C RTN ;YES, C(0-1)= ORIGINAL STATUS then return with original status in C[0:1]

 6D5F 264 SELPF 9

6D60 3 C ;BUSY? Printer busy

 6D61 27 JC +04 FS10 6D65 ;YES

 6D62 264 SELPF 9

 6D63 43 c ;STATUS VALID? status valid?

 6D64 13 JNC +02 FS20 6D66 ;NOT NOW

FS10 6D65 248 SETF 9 ;SET UP TO GO AROUND TWICE if printer busy

FS20 6D66 130 LDI 20 F9 clear if not busy or status is valid

6D67 20 F9 set is busy or status not valid

FS30 6D68 266 C=C-1 S&X

 6D69 01B JNC +03 FS40 6D6C no timeout

 6D6A 248 SETF 9 ;TIME OUT. SET ERROR FLAG time out, set flag and prepare to get out

6D6B 38B JNC -0F FNSTS 6D5C ;PUT ORIGINAL STATUS IN C(0-1) must have flags in C[0:1], will return because F9 is set

FS40 6D6C 264 SELPF 9

 6D6D 43 c ;STATUS VALID? check again?

 6D6E 3D3 JNC -06 FS30 6D68 ;NOPE not valid, loop again

 6D6F 264 SELPF 9 valid status, can read

 6D70 03A : ;READ STATUS

 6D71 5 E status now in C[13:10] P[15:12]P[11:8] P[7:4] P[3:0]

6D72 24C ?FSET 9 ;NEED TO GO AROUND AGAIN? need another try?

 6D73 07B JNC +0F FS95 6D82 ;NO no, prepare to get out

FS50 6D74 264 SELPF 9

6D75 3 C ;BUSY? printer busy?

 6D76 387 JC -10 FS20 6D66 ;YES yes, try again

FS90 6D77 244 CLRF 9 not busy

 6D78 373 JNC -12 FS20 6D66 try again with F9 clear

FNST40 6D79 221 ?NC XQ CKEN 6D88 check if F21 enabled

6D7A 1B4

 6D7B 10B JNC +21 IN999 6D9C ; P+1 - DON'T PRINT return here if not

INADV 6D7C 171 ?NC XQ FNSTS 6D5C ; P+2 - PRINT return here if yes, check status

6D7D 1B4

OOPCHK 6D7E 00C ?FSET 3 ;OOPS?

 6D7F 13 JNC +02 OOP20 6D81 ;NO

 6D80 248 SETF 9 ;YES, SET ERROR FLAG

OOP20 6D81 3D8 C<>ST

we enter here after reading printer statusP[15:12]P[11:8] P[7:4] P[3:0]

FS95 6D82 37C RCR 12 2 0

 6D83 3D8 C<>ST P[7:4] P[3:0] 2 0

 6D84 3E0 RTN Exit with: original flags ST[7:0] in C[1:0]

printer status P[7:0] in C[13:12]

printer status P[15:8] in C[13:12]

Developing YPRT18

29.10.2022

What must be done

PBYTEC routine – send one byte to the printer

PBYTEC - SENDS A CONTROL BYTE TO THE PRINTER

ON ENTRY, C[1:0]=BYTE TO BE SENT TO THE PRINTER

AND S9=ERROR FLAG

USES: N, NO PT, S9 FOR ERRORS, NO ADDITIONAL SUB LEVELS

IF S9=1 THEN DOES AN IMMEDIATE RETURN

WAITS UP TO 1 SECOND FOR THE PRINTER TO BE NOT BUSY. ON A

TIMEOUT,

SETS S9 AND RETURNS.

PBYTDU - PRINT A BYTE OF DATA UNCONDITIONALLY. SAME AS PBYTEC

EXCEPT CLEARS BIT 7 OF THE DATA FRAME BEFORE SENDING IT TO THE

PRINTER.

CPBYTE - CONDITIONALLY PRINT BYTE. LOOKS AT FLAG 55 BEFORE

DROPPING

INTO PBYTEC. IF FLAG 55 IS CLEAR, THEN DOES AN IMMEDIATE RETURN

WITHOUT SENDING ANYTHING TO THE PRINTER. USED FOR COUNTING

CHARACTERS TO SEE WHETHER THEY WILL FIT ON A LINE. FLAG 55 IS THE

PRINTER EXISTENCE FLAG, WHICH IS NOMINALLY ON ALL THE TIME THE

PRINTER IS PLUGGED IN.

Developing YPRT19

29.10.2022

What must be done

PBYTEC routine – send one byte to the printer
CPBYTE 6E15 N=C

 6E16 C=0 S&X

 6E17 RAMSLCT

 6E18 READ (14)d

 6E19 C<>ST

 6E1A ?FSET 0 ;FLAG 55?

 6E1B JC +04 CPBYT1 ;YES, SEND BYTE TO PRINTER

 6E1C C<>ST ;NO, DON’T PRINT YBUSY, YBUSYN

PBYT01 6E1D C=N ;RESTORE C REGISTER Function Check if serial transmit buffer is empty

 6E1E RTN Input None

CPBYT1 6E1F C<>ST Uses N (YBSY), C

 6E20 C=N Output F9 set if busy, F9 clear if empty

 6E21 JNC +05 PBYTEC leaves HP41CL peripherals selected (for PBYTEC efficiency)

PBYTDA 6E22 A<>C S&X original C is saved in N

PBYTDU 6E23 C<>ST YBUSYN does not save C for PBYTEC efficiency

 6E24 CLRF 7 ;SUPPRESS 8TH BIT Code fits in PBYTEC space, one word over, can we use this?

PBYTCS 6E25 C<>ST

PBYTEC 6E26 ?FSET 9 ;ANY ERROR SO FAR? PBYTEC ?FSET 9 any error?

 6E27 ?C RTN ;YES, RETURN IMMEDIATELY ?C RTN yes, return

 6E28 N=C ;SAVE C IN N ?NC GO YPBYTEC 7400 go to our PBYTEC replacement in Page 7 (for now)

 6E29 LDI space below is available

 6E2A 285 about 1 second timeout 6E2A NOP

6E2B C=C+C S&X SECS/CYCLE 6E2B NOP

PBYT11 6E2C C=C-1 S&X ;TIMEOUT? 6E2C NOP

 6E2D JC +08 PBYT21 ;YES 6E2D NOP

6E2E SELPF 9 6E2E NOP

 6E2F C ;PRINTER BUSY? 6E2F NOP

 6E30 JC -04 PBYT11 ;YES 6E30 NOP

 6E31 C=N ;NO, RETRIEVE C REG 6E31 NOP

6E32 SELPF 9 6E32 NOP

 6E33 G 6E33 NOP

6E34 RTN 6E34 NOP

PBYT21 6E35 SETF 9 6E35 NOP

6E36 JNC -19 PBYT01 6E36 NOP

Developing YPRT20

29.10.2022

What must be done

Subroutine to send one byte to the 41CL serial port

◆ Not very complicated

◆ Select HP41CL peripheral

◆ Time-out loop to check if serial port is busy

◆ Transmit data

6E4A LDI

6E4B 3F0 to select HP41CL peripheral, also our counter

6E4C RAMSLCT

6E4D PRPH SLCT select HP41CL peripheral

6E4E A=C S&X time out counter in A

6E4F YPBTC1 READ 13(c) transmit status register in C[1:0], transmit buffer status is bit 0

6E50 RCR 1 buffer status to MS, test bit 0, set if buffer was empty

6E51 C=C-1 MS if no carry, than buffer was empty

6E52 JNC +05 YPBTC3 no carry, buffer empty and we can proceed with the write

6E53 A=A-1 S&X buffer not empty, decrement counter

6E54 JNC -05 YPBTC1 and try again

6E55 SETF 9 we get here if there is a time out, so set flag 9 to indicate an error

6E56 JNC +06 RESTREG restore our original registers and return

6E57 YPBTC3 A<>C ALL byte to write is in A[11:10], A[2:0] was used for the counter

6E58 RCR 10 byte C[1:0] in position

6E59 WRIT 15(e) and write C[1:0] to transmit buffer to send data

Developing YPRT21

29.10.2022

Plan A

Simplistic approach

◆ Patch all POWON? checks

◆ Replace all relevant SELP 9 instructions with a ?NCXQ to a new

routine doing the actual operation to send the byte to the serial port

• Only PRINTC remains to be implemented

◆ Use NOPs at 0x67DE (35 NOP’s)

◆ Patch the FNSTS routine to return a valid but fixed status word,

ignore the flags for now

◆ Use NOPs at 0x67DE (35 NOP’s) for extra code

◆ Remove user code routine PRPLOT and PRPLOTP to make space

for new routines, but first do some tests

Developing YPRT22

29.10.2022

Plan A

Results of Plan A

◆ Patching all POWON? checks was easy

◆ FNSTS routine would be much shorter

◆ All code might fit in this area and the NOPS area, may be able to

keep user code in printer ROM

◆ First simple version actually worked, could PRA and ACA and PRP

seemed to work

◆ But: PRX, PRSTK gave some strange results

◆ Printing of Display (AVIEW) gave strange results

◆ Further deep dive in the printer ROM:

• All subroutine levels are used in PBYTEC

Developing YPRT23

29.10.2022

Plan B

Next step: do not use subroutines

◆ Not so complicated, do a few direct jumps and them jump back

◆ Issue was only in PBYTEC at first, but there was an issue in

FNSTS as well when checking flags 15 and 16

◆ FNSTS issue was caused by conveniently doing a call to LDSST0

(get user flags in C), and resolved. Could would fit exactly in the

space of FNSTS

◆ Fixing PBYTEC required to jump to the NOP space, and coded

fitted just fine there

Developing YPRT24

29.10.2022

Plan B

Results of Plan B

◆ First version actually worked, could PRA and ACA and PRP

seemed to work

◆ But: PRX, PRSTK still gave some strange results

◆ PRP seemed to work

◆ Printing of Display (AVIEW) gave strange results

◆ Further deep dive in the printer ROM:

• Need to preserve nearly ALL registers in PBYTEC

• Selecting the HP41CL peripheral deselects the display, and

exactly that was needed for AVIEW and printing registers

(PRX, PRSTK) to work

Developing YPRT25

29.10.2022

Plan C

Next step: need to preserve nearly all registers

◆ For correct implementation of serial write only one word needed to

be saved, but where?

◆ Well, we have plenty of memory in the HP41CL, right?

◆ We do, but how to access and where?

◆ Solution found, but code to store something in HP41CL memory is

tricky if almost everything else need to be saved, only N can be

used

◆ Code is long, and would not fit: must use bankswitching

◆ Decided to use YUPS reserved space for intermediate storage

Developing YPRT26

29.10.2022

Plan C

Next step: fix the display selection

◆ A further dive in the printer ROM revealed the following:

• Printing registers (not ALPHA) would print the display with the

PRTLCD routine

◆ Fixing was easy, needed to include enabling the display in the main

loop, and discovered that also here the C register needs to be

preserved, and an alternative ENLCD routine was included

Developing YPRT27

29.10.2022

Final result

Finally everything worked

◆ Some additional patches were implemented

◆ To implement standard Bank Switching behavior some routines had

to be patched

◆ There was some unexpected issues with polling entries. These

were simply removed

◆ To patch a bankswitched ROM on the 41CL: simply plug the 2nd

bank in its place and in a regular ROM page accessible to DAVID

Assembler

◆ Now show some code

Developing YPRT28

29.10.2022

Next steps

We can only use Diego’s USB41 printer simulator

◆ Thanks to Diego that it exists

• No graphics

◆ Would like to use Christophs HP82240B emulator

• Graphics support

◆ Two possibilities

• Ask Christoph to add the HP82143A printer to his software

• Ask Diego to add graphics to his software

• Create a YPRINT with a translation to the HP822240B printer

• Patch the 82242A Infrared Printing Module

◆ All are technically possible

Developing YPRT29

29.10.2022

Next steps

Extending YPRT to support the HP82240B printer

◆ Fundamental differences exist

• Could also patch the IR printer module?

• No documentation about this module

• No documentation about the SELPF 9 instructions

• Extend existing YPRT to support 82240B?

• The DM41X appears to do this translation

• Need to store local state (graphics etc) in 41CL memory

• For Column mode, need to store all colums or trick this (one

column byte becomes 3 bytes to send)

◆ Now working with Christoph on the sources of his 82240 simulator

to implement HP82143A support

Developing YPRT30

29.10.2022

QUESTIONS ?

